High-Nickel Cathode Materials for High-Energy, Long-Life, Low-Cost Lithium-Ion Batteries

ARUMUGAM MANTHIRAM

Materials Science and Engineering Program
The University of Texas at Austin
June 3, 2020

Project ID #: bat415

This presentation does not contain any proprietary, confidential, or otherwise restricted information

OVERVIEW

Timeline

- Project start date: October 2018
- Project end date: December 2021
- 40% complete

Budget

- Total project funding
 - DOE: \$2,400,000
- Funding received in FY 2018
 - \$0
- Funding received in FY 2019
 - \$800,000
- Funding for FY 2020
 - \$800,000

Barriers

- Barriers
 - Cycle and calendar life
 - Abuse tolerance
 - Storage stability
- Targets
 - Affordable, high-performance layered oxide cathodes with low or no cobalt content (≤ 50 mg Co/Wh)

Partners

NREL, Tesla, Inc.

RELEVANCE

Overall Project Objective

Develop high-nickel, low-cobalt cathodes that deliver a high specific energy of ≥ 600 Wh kg⁻¹ at a cobalt content of ≤ 50 mg Wh⁻¹, and have a long cycle (C/3 deep discharge with ≤ 20% energy fade over 1,000 cycles) and calendar life (≥ 15 years)

Achievements in Year 1

 Demonstration of an ultralow-cobalt, high-energy layered cathode in 2 Ah pouch full cells and a cobalt-free, high-energy layered cathode in 75 mAh pouch full cells

Objectives and Milestones for Year 2

- Exploration of high-Ni LiNi_{1-x-y}Co_yM_xO₂ with reduced Co content (< 6%)
 - A survey of dopants on electrochemical performance, safety, and storage stability (Q1)
 - Effect of high electrode loading and calendaring on electrochemical performance (Q2)
 - Further evaluation of ALD coating on best performing LiNi_{1-x-v}Co_vM_xO₂ (Q3)
 - A survey of electrolyte additives on LiNi_{1-x-v}Co_vM_xO₂ in EC-free electrolytes (Q4)

APPROACH

- Composition Design: Screening of metal dopants that stabilize high-nickel layered oxides in the absence of cobalt, based on coin half cell and pouch full cell performance
- Synthesis Scale-up: Increase the tank reactor size for co-precipitation from 10 L to 30 or 50 L. Increase the batch size for calcination from 10 20 g per batch to 50 200 g per batch
- Surface Stabilization: Exploration of surface treatments such as regular and ALD coating
- Electrolyte Modification: Exploration of functional electrolyte additives in the absence of ethylene carbonate
- Assessment: Evaluation in pouch full cells with commercially relevant electrode loading and porosity as well as in-depth characterization to understand the degradation mechanisms

DESIGN OF HIGH-NICKEL, COBALT-FREE LAYERED CATHODES

 A high-nickel, cobalt-free layered oxide (NMA) has been synthesized and benchmarked against NMC, NCA, and NMCAM of identical Ni content. High-Ni NMA delivers high specific capacity, long cycle life, and enhanced safety

CALCINATION PRESSURE EFFECT ON LINIO₂

- LiNiO₂ synthesized in a pressurized oxygen environment shows improved cycle stability over LiNiO₂ synthesized under unpressurized oxygen
- Li⁺/Ni²⁺ disorder is reduced with increasing calcination pressure
- Substantially reduced impedance growth in LiNiO₂ synthesized under 10 psi O₂ atmosphere
- Superior rate performance in 10 psi sample over control and 5 psi samples
- Changes in the structural and electrochemical properties of higher pressure samples are consistent with reduced oxygen vacancy concentration and cation disorder

ELEMENTAL DOPING IN LINIO₂

- A co-doping of Mg and Cu in LiNiO₂ improves cycle stability and energy efficiency with reduced polarization growth
- Removal of surface Li₂CO₃ by doping plays a critical role in improving the full-cell performance
- Co-doping with only as small as 0.3% Cu is much more effective in improving the electrochemical performance, while maintaining a robust crystal structure

COLLABORATION AND COORDINATION WITH OTHER INSTITUTIONS

• Dr. Shriram Santhanagopalan, Nation Renewable Energy Laboratory (NREL)

Electrochemical testing and ALD coating exploration of high-nickel, low-/zero-cobalt cathode samples (*e.g.*, NC-9406 and doped NMA-900505) supplied by UT Austin

Dr. Hieu Duong, Tesla Inc.

Fabrication of 2 Ah pouch full cells with a high-nickel, low-cobalt cathode (LiNi_{0.85}Co_{0.05}Mn_{0.075}Al_{0.02}Mg_{0.005}O₂) supplied by UT Austin

PROPOSED FUTURE RESEARCH

• FY2020

- A survey of LiNi_{1-x-y}Co_yM_xO₂ (y \leq 0.05 and x \leq 0.15, M = Mn, Al, Mg, and more) and the effects of dopants on electrochemical performance, air-storage stability, and safety
- High electrode loading and calendaring effects on the electrochemical performance of low-cobalt and cobalt-free compositions
- Further evaluation and validation of ALD coatings by NERL on best-performing LiNi_{1-x-y}Co_yM_xO₂ (y \leq 0.05 and x \leq 0.15, M = Mn, Al, Mg, and more)

• FY2021

- A survey of $LiNi_{1-x}M_xO_2$ (x \leq 0.20, M = Mn, Al, Mg, and more) and the effects of dopants on electrochemical performance, air-storage stability, and safety
- A survey of functional electrolyte additives on best-performing low-cobalt LiNi_{1-x-y}Co_yM_xO₂ and cobalt-free LiNi_{1-x}M_xO₂ in EC-free electrolytes

Any proposed future work is subject to change based on funding levels

SUMMARY

- Li[Ni_{1-x-y}Mn_xAl_y]O₂ (NMA) demonstrates overall desired physical and electrochemical properties, including tap density, specific capacity, rate capability, cyclability, thermal stability, and residual Li compounds in comparison with Li[Ni_{1-x-y}Mn_xCo_y]O₂ (NMC), Li[Ni_{1-x-y}Co_xAl_y]O₂ (NCA), and Li[Ni_{1-x-y-m-n}Mn_xCo_yAl_mMg_n]O₂ (NMCAM)
- LiNiO₂ is known to be sensitive to synthesis conditions; with higher oxygen pressure in the furnace during calcination, LiNiO₂ shows enhanced rate capability and cyclability as well as suppressed cation (Li/Ni) mixing
- Co-doping with magnesium and copper enhances both the surface and bulk stability of LiNiO₂, improving energy efficiency and cyclability during cycling as well as air-storage stability
- A high-nickel, low-cobalt cathode sample (LiNi_{0.85}Co_{0.05}Mn_{0.075}Al_{0.02}Mg_{0.005}]O₂) delivered to Tesla for assembling 2 Ah pouch full cells shows good performance in rigorous commercial cell configurations. The cell testing is continuing at both Tesla and Idaho National Laboratory.

TECHNICAL BACKUP SLIDES

DESIGN OF HIGH-NICKEL, COBALT-FREE LAYERED CATHODES

 Four cathode samples (NMC, NCA, NMCAM, and NMA) consist of spherical particles of around 12 – 14 µm and SEM EDX shows uniform elemental distribution within a secondary particle, demonstrating high sample quality and consistency

DESIGN OF HIGH-NICKEL, COBALT-FREE LAYERED CATHODES

Precursors	Ni	Co	Mn	Al	Mg
NMC	0.890	0.055	0.055	0	0
NCA	0.883	0.053	0	0.064	0
NMCAM	0.890	0.042	0.044	0.013	0.011
NMA	0.883	0	0.056	0.061	0

Lithiated oxides	Li/Ni mixing	Residual Li	
NMC	3.3%	2583 ppm	
NCA	1.4%	2856 ppm	
NMCAM	2.6%	2748 ppm	
NMA	3.1%	2532 ppm	

 Four cathode samples (NMC, NCA, NMCAM, and NMA) show consistent crystal structure. NMA shows relatively low surface residual lithium and reasonable level of Li/Ni mixing

ELEMENTAL DOPING STUDY OF LINIO₂

- Single Mg doping is not beneficial in terms of both surface and bulk properties of LiNiO₂
- The best full-cell stability is obtained when the amount of Li₂CO₃, not total free LiOH, is minimized with Cu doping

ELEMENTAL DOPING STUDY OF LINIO₂

- Single magnesium doping rather deteriorated the surface stability of LiNiO₂
- Surface is stabilized by copper addition

- TM-O bond stability is improved by either single or dual doping
- A synergy of bulk stability by Mg doping and surface stability by Cu addition is realized

COLLABORATION AND COORDINATION WITH OTHER INSTITUTIONS

2 Ah cell cathode				
97/1/2 wt.%				
15.0 mg cm ⁻²				
2.9 mAh cm ⁻²				
3.33 g cm ⁻³				
2 Ah cell anode				
97/1/2 wt.%				
9.7 mg cm ⁻²				
3.3 mAh cm ⁻²				
1.49 g cm ⁻³				

-				
Cell metrics				
Weight	34.4 g			
Cathode weight	33%			
Electrolyte weight	16%			
Volume (rough est.)	19.4 ml			
Capacity (30 °C, C/3)	2.0 Ah			
Voltage (30 °C, C/3)	3.65 V			
Specific energy	215 Wh kg ⁻¹			
Energy density (rough est.)	376 Wh I ⁻¹			
	<u> </u>			

 A high-Ni, low-Co cathode (LiNi_{0.85}Co_{0.05}Mn_{0.075}Al_{0.02}Mg _{0.005}O₂) was supplied to Tesla for assembling 2 Ah pouch cells in commercial cell configurations. These cells are being tested at both Tesla and INL